y^2+y-(4x-16x^2)/10=0

Simple and best practice solution for y^2+y-(4x-16x^2)/10=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y^2+y-(4x-16x^2)/10=0 equation:


x in (-oo:+oo)

t_1 = y^2+y

t_1-((4*x-16*x^2)/10) = 0

(-1*(4*x-16*x^2))/10+t_1 = 0

(-1*(4*x-16*x^2))/10+(10*t_1)/10 = 0

10*t_1-1*(4*x-16*x^2) = 0

10*t_1+16*x^2-4*x = 0

(10*t_1+16*x^2-4*x)/10 = 0

(10*t_1+16*x^2-4*x)/10 = 0 // * 10

10*t_1+16*x^2-4*x = 0

10*t_1+16*x^2-4*x = 0

DELTA = (-4)^2-(4*10*16*t_1)

DELTA = 16-640*t_1

16-640*t_1 = 0

16-640*t_1 = 0 // - 16

-640*t_1 = -16 // : -640

t_1 = -16/(-640)

t_1 = 1/40

DELTA = 0 <=> t_4 = 1/40

x = 4/(2*16) i t_1 = 1/40

x = 1/8 i t_1 = 1/40

( x = ((16-640*t_1)^(1/2)+4)/(2*16) or x = (4-(16-640*t_1)^(1/2))/(2*16) ) i t_1 > 1/40

( x = ((16-640*t_1)^(1/2)+4)/32 or x = (4-(16-640*t_1)^(1/2))/32 ) i t_1 > 1/40

t_1-1/40 > 0

t_1-1/40 > 0 // + 1/40

t_1 > 1/40

x in { 1/8, ((16-640*(y^2+y))^(1/2)+4)/32, (4-(16-640*(y^2+y))^(1/2))/32 }

See similar equations:

| -10.1z+1.5=-50.7-1.4z | | 34=-.4(p+22) | | 7b^2-12b=-10 | | 4x^2+5x=10 | | 1/6z+1/6=-5/6z+1/3 | | y^2+y-4x-16x^2=0 | | 1r+8.2+.4r=-8.6 | | 6(x+1)=2x-14 | | a+3a+5a=180 | | -2(t-2)+4t=6t-9 | | 3x+2/x+1 | | 2x+1-3x-5=3(x-10) | | -2(4p-5)-3(5+3p)=-5 | | 2m+6=3 | | 1/2(6x-4)=4x/1-9/1 | | 3a-4b=cforb | | 3/4b-21=48 | | -4a+20+2a=8a-5a | | 70=2(k-1)-5(5k+4) | | -2a^2+8=0 | | -12x+4=-x^2 | | 4x(-9)=7x+3 | | 14/1-w/8=3w/4-21/1 | | 3/x+9=90 | | a/5=-70 | | 940+40w=1300 | | -.5(x-2.4)=6 | | 6x+y=20 | | 6-7g-17=2g+16 | | 6r^2+2r-4=0 | | 4x+1=6x-18 | | -4(t-2)+6t=8t-9 |

Equations solver categories